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Two models for the Freedericksz transition in a fluctuating magnetic field are 
considered: one is based on a dichotomic and the other on a nonlinear Gaussian 
noise. Both noises are characterized by a finite correlation time ~. It is shown 
that the linear response assumption leading to the "best Fokker-Planck 
approximation" in the dichotomic and nonlinear Gaussian cases can be trusted 
only up to the order z ~ and t ~ respectively. The role of the corrections to the 
linear response approximation is discussed and it is shown how to replace the 
non-Fokker-Planck terms stemming from these corrections with equivalent 
terms of standard type. This technique is shown to produce perfect agreement 
with the exact analytical results (dichotomic noise) and to satisfactorily fit the 
results of analog simulation (nonlinear Gaussian noise). 

KEY WORDS: Breakdown of the Fokker-Planck structure; dichotomic 
noise; nonlinear Gaussian noise; Freedericksz transition. 

1. I N T R O D U C T I O N  

I t  has  been  s h o w n  (1) t ha t  the  so-ca l l ed  best  F o k k e r - P l a n c k  a p p r o x i m a t i o n  

( B F P A )  t h e o r y  (z) relies on  the  l inea r  r e sponse  a p p r o x i m a t i o n .  (3'4) W h e n  

app l i ed  to  s tudy  the  e n e r g y  a b s o r p t i o n  f r o m  a r a d i a t i o n  field this 

a p p r o x i m a t i o n  is s h o w n  (1) to express  the  e n e r g y  a b s o r b e d  per  un i t  o f  t ime  
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in terms of the equilibrium velocity autocorrelation function precisely in 
the same way as the Kubo theory. (5) On the other hand, the Kubo 
theory, t5) albeit severely criticized by van Kampen, (6) has a wide dominion 
of application and is currently applied to interpreting experimental results 
in many research areas. This means that the BFPA should be regarded as 
being a well-founded theory: in the special case where the excitation source 
is provided by a noise with a finite correlation time ~, the range of validity 
of the BFPA should be from ~ = 0 to ~ = o% provided that the intensity of 
noise is kept weak enough. ~7'8) However, in ref. 2 a system described by the 
equation 

= ~0(x) + ~(x)  ~(t) (1.1) 

where ~(t) is a Gaussian noise with vanishing mean value and correlation 
time z, the BFPA was shown to break down at the second order in ~. This 
is a consequence of the nonlinear nature of the systems studied in ref. 2. 
From the projection method of ref. 2 it is also evident that the second order 
in the interaction between x and ~ is totally unaffected by the statistics of 3. 
To realize that its breakdown depends on the nonlinear nature of the 
system (otherwise the linear nature of the system and the Gaussian 
statistics of the noise will lead to an exact result), it is necessary to deter- 
mine the corrections to the BFPA at the fourth order in the interaction 
between x and 3. 

In this paper we study the corrections tot he BFPA generated by noise 
with non-Gaussian statistics. To this purpose we study two models for the 
Freedericksz transition in a fluctuating magnetic field, (9'1~ which are 
described by equations with the same structure as Eq. (1.1) but with non- 
Gaussian statistics. The breakdown of the BFPA is shown to be still more 
severe than in the Gaussian case. 

We stress the decisive role played in this paper by the study of the 
dichotomic case. This is an especially illuminating case since it is accom- 
panied by an exact analytical solution, to which the predictions of our 
approximate theory can be compared without the usual concern on the 
precision of the comparison data when these are provided via analog or 
digital simulation. Nevertheless, the analog simulation will be used for the 
auxiliary purpose of illustrating the breakdown of the BFPA equation in 
the appealing case of nonlinear Gaussian noise (where no exact solution is 
available). 

The outline of the paper is as follows. Section 2 is devolted to 
illustrating two cases of breakdown of the BFPA equation. Section 3 shows 
how to derive the first nonvanishing corrections to the BFPA equation for 
the two cases of noise statistics here under investigation. In Section 4 we 
replace nonstandard diffusion terms stemming from the corrections to the 
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BFPA with equivalent standard diffusion operators (using the same 
procedure as in ref. 2). Concluding remarks are found in Section 4. The 
Appendix is devoted to illustrating the analog apparatus used to study the 
nonlinear Gaussian case. 

2. THE B R E A K D O W N  OF THE F O K K E R - P L A N C K  E Q U A T I O N  

The major  aim of the present section is to illustrate the breakdown of 
the BFPA in two different cases. In the first case (dichotomic noise) the 
exact solution of the BFPA equation is compared to the exact equilibrium 
distribution of the variable x which accompanies the dichotomic statistics. 
In the latter case (nonlinear Gaussian noise) this breakdown is illustrated 
by comparing the exact solution of the BFPA equation to the results of 
analog simulation (see the Appendix for a description of the corresponding 
experimental setup). Note that analog simulation is of vital importance to 
study the latter case, where no exact analytical solution is available. The 
accuracy of the analog simulation apparatus is checked by applying it to 
the case of dichotomic noice and comparing the corresponding result with 
the exact analytical solution provided in this case by Horsthemke et al. (9) 
(see Fig. 1). Note that no fitting parameters but the normalization constant 
is used to get this excellent agreement. 

The theoretical reasons for the breakdown of the BFPA equation 
under these two different circumstances will be analyzed in later sections. 

2.1. A Mode l  for  the Freedericksz Transit ion in 
a Fluctuat ing Magnet ic  Field: D ichotomic  Case (s~ 

The interesting phenomenon of the Freedericksz transition in a 
fluctuating magnetic field has been recently modeled by two groups of 
investigators (9'1~ by using virtually the same stochastic differential 
equation, (5) which reads 

~ =  - r x  + [ tz- ,7( t)]  2 ( ~ x -  3x  3) (2.1) 

where r/(t) is a noice characterized by 

( r / ( t ) )  = 0  
(22) 

(~1(tl) •(t2)) = 6 2 e x p ( - 7  It2 - -  t l  l) 

5 Note that Sagues and San Miguel (1~ studied the case where the variable x is also driven by 
an additive stochastic force. Within the context of the present paper we limit ourselves to the 
case where this additive stochastic force vanishes and the analytical results of Sagues and 
San Miguel will be referred to as adapted to this special case. 
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Fig. 1. Equilibrium distribution of the variable x in the case of the dichotomic noise (see 
Section 2.1). (--) The exact equilibrium distribution [Eq. (2.4)] of the system described by 
Eq. (2.1). (O) The results of the analog simulation. The normalization constant was obtained 
by matching theory to the measurements at the maximum. The parameters of Eq. (2.1) are 
F = I ,  ~=30, h= 1.5, (r/z) =0.04, c~=1, and//=1/2. 

Note  that  in the original models (9'1~ ~ and /3  derive from the expan- 
sion of  sin x (x denot ing an angle variable), leading to c~ = 1 and /3  = 1/2. 

Our  interest in Eq. (2.1) is mot ivated  by the fact that  this equat ion can 
be given the same form as the stochastic differential equat ion (1.1) (which, 
in turn, is precisely the same as that  studied in the compan ion  paper(2)). 
Indeed, Eq. (2.1) is equivalent to 

= ~0(x) + ~ ( x )  r  

where 

In the dichotomic case 

~(t) = r/2(t) - ( r /2( t ) )  - 2hr/(t) 

(p(X) = AX -- B x  3 

A -  [ h 2 +  ( r l z ( t ) ) ] ~ - F  

B = Eh2+ ( q 2 ( t ) ] f l  

~,(x) - ~x - / ~ x  ~ 

(2.1 ' )  

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

q2(t) =- (q2 ( t )  ) (2.3f) 
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and the Fokker-Planck equation associated with Eq. (2.1) can be given the 
exact equilibrium distribution (9) 

~,(x) 
a~q ) = N 

4h ~ ~O~(x )  - ~o~(x) 

F x2 ]-~/4(A + 2 h ~ )  x ~ | @[X2~_X2 ] ~/4(A 2h~) (2.4) 

where 

A + 2hc~ 6 A - 2h~ 6 2 -- X 2 
x + - B + 2hfl 6' - -= B - 2hfl 6' 

= ( q 2 ( t ) )  1/2 (2.5) 

The support (9) of the equilibrium distribution ~req(X ) is 

2 < 0  {0} if x 2_<0, x+ 
_ 2 > 0  11= {0, x+} if x 2 <0,  x+ 

2 {x , x + }  if x2_>0, x + > 0  

(2.5') 

Note that in Section 4 this analytical equilibrium distribution is rewritten 
in a form more convenient for the theoretical purposes of that section [see 
Eq. (4.1)]. 

The projection approach to the Fokker-Planck equation at the second 
order in s does not rely on the Gaussian assumption. (2) This means that 
even in the present case at the second order in 2fl we obtain the BFPA 

53 [ 63 4h2 ~t] 2 ) 
?5 ~(x; t) = L - ~ x  q'(x) ~ 

53 
X-~x ~(X) ~x ~(X) ] ~(x; t ) (2.6) 

where qS(x) is shown (1'6'7) to satisfy the differential equation 

r  = r  + r [~0(x) r  - ~o'(x) r  (2.7) 

- 1/7 denotes the noise correlation time. It is easy to show that Eq. (2.7) 
is satisfied by a solution with the form ~(x)  = R x -  RIx 3. By replacing this 
expression Eq. (2.7) with q)(x) and q/(x) provided by Eqs. (2.3b) and (2.3e), 
we can determine the unknown coefficients R and R'. The resulting 
expression for ~b(x) is 

qS(x) = O(x) + kx3/(2A + 7) (2.8) 
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where 

k - 2 ( A f t  - B ~ )  (2.8') 

The white noise approximation leads to 

qS(x) = ~,(x) (2.9) 

In the limit z ~ 0, the BFPA, the white noise approximation, and the exact 
result virtually coincide. On the other hand, Fig. 2 shows that, for v finite, 
the white noise approximation provides a result closer to the exact 
equilibrium distribution than the predictions of the BFPA equation. This is 
a severe violation of the BFPA (a still more severe one will be illustrated 
with theoretical arguments and analog simulation in the case of nonlinear 
Gaussian noise). We plan to show that the breakdown of the BFPA in the 
cases of dichotomic and nonlinear Gaussian noise is more severe than in 
the Gaussian case. Whereas in the Gaussian case (2) it takes at the second 
order in ~, in the case of the dichotomic and nonlinear Gaussian noise it 
takes place at the first and zeroth orders in ~, respectively. 

=I0 

x , .  :, 
�9 ;I 

I ;  ~ 

I: 

I 
I I '  , I  

S ,  ~ 
�9 ~,w �9 �9 i% 

0.5 X 1.3 
Fig. 2. Theoretical equilibrium distributions of the variable x in the dichotomic case of 
Section 2.1. ( - - )  The exact theoretical result of Eq. (2.4). ( ..- ) The approximate equilibrium 
distribution resulting from the BFPA equation (2.6), i.e., the equilibrium distribution of 
Eq. (4.3) with ~/iefr replaced by ~0 of Eq. (4.5). (- -) The result corresponding to the white noise 
approximation [Eq. (2.9)]. Note that the approximate procedure of Section 4.1 provides an 
equilibrium distribution which coincides with the exact result (solid line). The parameters of 
Eq. (2.1) are F =  1, 7 = 10, h = 1.5, <~/2> =0.04, ~ = 1, and f l=  1/2. 
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2.2. A Model  for the Freedericksz Transit ion in a Fluctuat ing 
Magne t i c  Field: Nonl inear  Gaussian Noise (11) 

When rl(t ) of Eq. (2.2) is a Gaussian noise the simplifying condition of 
Eq. (2.3f) can no longer be used. The resulting nonlinear Gaussian noise 
~(t) is characterized by the biexponential correlation function: 

(4(0)  ~(t))  = 2( t /2)  2 e-2~' + 4h2(t/2) e -~  (2.10) 

This does not result in any technical difficulty, since it is a straightforward 
matter to apply the theory of the companion paper (2) to the general case of 
the multiexponential correlation function: 

N 

(4(0) ~(t))  = ~ (~2i)e-~/,, (2.11) 
i = 1  

It is immediately seen that the BFPA in this case reads 

~3 a(x; t) = [ (? u at  -- -~X ~O(X) + Z D, 
i = 1  

X~xx0(X ) q~,(x) a (x ; t )  (2.12) 

where 

Di = ( ~ ) / 7 i ,  i =  1, N 

and the functions qSi(x ) satisfy the differential equations 

~,(x) = ~,(x) + ~,l-~o(x) ~ ; ( x )  - qr  ~,(x)] ,  

where 

(2.13) 

i =  1, N (2.14) 

ri --- 1/7i, i =  1, N (2.15) 

In the nonlinear Gaussian case associated with Eq. (2.10) we have to deal 
with two differential equations [of the type of Eq. (2.14)], i.e., N =  2 and 

~2 71=27;  7~=7;  ( ~ ) = 2 ( r / 2 ) 2 ;  ( 2 ) = 4 h 2 ( t / 2 )  (2.15') 

Each equation of this bidimensional set can be solved with the same 
approach as that used in the preceding subsection. We thus obtain 

~ ( x )  = tp(x) + kxa/2(A + 7) (2.16) 

cI)2(x ) = ~h(x) + kx3/(2A + 7) (2.16') 



In the white noise limit (7 --, oo) we are immediately led to 

q , , ( x )  = = (2.17) 

X 
v 

which, in turn, when replaced into Eq. (2.12) with N =  2 produces the same 
Fokker-Planck equation as that recently used by Sagues and San Miguel (9) 
to study the Freedericksz transition in a fluctuating magnetic field. From 
Eq. (2.16) it appears that in this case the BFPA equation only affects the 
cubic terms of ~l(x)  and (be(x), thereby preventing the color of noise from 
affecting the threshold value for the Freedericksz transition (for the 
corresponding definition of the threshold see, for instance, ref. 9). 

Figure 3a shows that at small values of both ~ and noise intensity the 
BFPA equation, the white noise approximation, (1~ and analog simulation 
provide virtually coincident results. Note that the solid curve denoting the 

0.5 

7 = 100 

) 
X 

(a) 
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1.3 

Fig. 3. Comparison of ( � 9  the results of analog simulation with the equilibrium distribution 
predicted by (- -) the white noise approximation of ref. 10, ( . . .  ) the BFPA equation, and ( - - )  
our theoretical approach (see Sections 3 and 4) in the case of nonlinear Gaussian noise. The 
normalization constants of all these distributions were obtained by matching the value of 
O'eq(X ) at the maxima. All cases are characterized by the parameters F =  1, h = 1.5, �9 = 1, and 
/3=1/2. (a) 7=100,  and <rt2>=0.04. Note that in this case the three curves are 
indistinguishable form one another. (b) Comparison between our theoretical result and the 
experimenta one for 7 = 30, and <r/2> = 0.81 (noise of moderate color and large intensity). (b') 
Comparison between different theoretical predictions for the same parameters as in (b). (c) As 
for (b) with 7=6.1 and <~/2> =0.04. (c') As for (b') with the same parameters as (c). (d) As 
for (b) with 7 =  1.54 and <r/2> =0.04 (strongly colored case). (d') As for (b') with the same 
parameters as (d). 
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Fig. 3 (continued) 
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Fig. 3 (continued) 
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Fig. 3 (continued) 

8 2 2 / 5 2 / 3 - 4 - 3 0  



990 Faetti e t  al. 

result of our theoretical approach (detailed in Sections 3.2 and 4.3) in the 
case of the moderately colored noise of Figs. 3b and 3c virtually coincides 
witht the results of analog simulation. We are thus in a position to show 
(Figs. 3b' and 3c') that the BFPA equation (dashed line) does not provide 
an agreement with this virtually exact result (solid line) more satisfactory 
than the white noise approximation (dotted line). Rather, in Fig. 3b' the 
white noise approximation seems to be better than the BFPA equation. 
Figures 3d and 3d' illustrate the case of strongly colored noise, where all 
three theoretical predictions (our theoretical approach, the white noise 
approximation, and the BFPA equation) are largely violated. Further 
discussion of Figs. 3b-3c' can be found in the next sections. 

3. HIGHER ORDER EFFECTS 

To study the corrections of higher order in the interaction between x 
and ~, we use the general result of ref. 2, 

~ta(x; t )={-~x~O(X)+ f~ W(s)exp[-Q(x)s]ds}a(x; t  ) (3.1) 

where 

exp[ - Q ( x ) s ]  - (exp ~ )  a ~ exp[ -(5r + D)s] (3.2) 

denotes the diffusional operator, which we plan to built up, and 

where 

W(so) = p~q'(tl) P~I e(~" + zpb)so (1 - P) s176 Ppeq(r/) e - ~,s0 

+ p~ql(r/) ds, ds2 ... ds, 
n = l  

x P~q~l e(z'a + ~b)~O (1 -- P) ~t~1(Sl)-.- 5~1(s,) 

• ( l _  p) s zeoso 

- ax  ~o(x) 

~ _ _ ~  ~ + @ 2 )  

~1 - - ~ ~ 4,(x) 

(3.3) 

(3.4) 
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and the projection operator P is defined by 

Pp(x, ~; t) = Peq(r]) f dr/p(X, t7; t) --= Peq(r]) O'(X; I) (3.5) 

where ,Oeq(r/) is the equilibrium distribution of the "bath" defined by 

LPbP~q(r/) = 0 (3.6) 

3.1. Nonl inear  Gaussian Case 

In this case we limit ourselves to studying the third order in ~r which 
turns out to be the first nonvanishing contribution to the BFPA. Since 
both the lowerst order contribution to ~) and that to W(s) are of second 
order ~1, D begins exerting its influence on its own expression [see Eqso 
(3.1)-(3.3)] at the fourth order in 501 . Therefore we neglect D appearing in 
Eq. (32), and rewrite Eq. (3.1) as 

~ ( x ; t ) = [  0 f~ ~-7 - ~  q,(x)+ 

where 

W(s) ds I a(x; t) (3.7) 

W(S) ~- W2(s)-t- W3(s ) (3.8) 

Wz(s) and W3(s) are the second- and third-order terms of the expansion of 
Eq. (3.3). 

W2(s) coincides with the approximation leading to the BFPA 
equation. Let us focus our attention on W3(s). This can be written as 
follows (So - s): 

where 

W3(so) = fo~ dSi X(so, sl) ~---~ t~(x) e w~(s~ si) 

0 
x ~x $(x)  e~Sl ~x $(x)  e -  Zeoso (3.9) 

X(S0 ' S1 ) = p~ql(~) p{eWb(so-,,) {eW~, ~ppeq(r/) (3.10) 

To calculate the three-times correlation function of Eq. (3.10), it is con- 
venient to follow the following calculation rules: 

(a) We apply the time evolution operator 5ab on the left. This means 
that we are dealing with the operator ~r adjoint to the operator s 
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driving the motion of the variable 17 of Eq. (2.2). In the case under study in 
this subsec t ion ,  is a Gaussian variable and the operator s reads 

Y~- = - 7  .~- (3.11) 

(b) We have to express ~ and 42, with ~ being given by (2.3a), in 
terms of the proper eigenstates of the operator Y~-. Since ~ and ~2 involve 
/7. q2. .3  and , ,  r/z, r/3, r/4, respectively, we must replace , .  ,z. r/3. and r/4 
with those suitable linear combinations of ,. r/z, r/3. and ,4 that turn out to 
be the eigenstates of s Via a straightforward calculation, it is shown 
that 

Y ' Z ,  = - : ' ,  

oZgp~-(,2__ ( r / 2 ) ) =  _ 2 2 ( . 2  (1/2)) 

~t~b~ (//3 __ 3 ,  ( , 2 )  ) = __ 3y(,3 _ 3 .  ( . 2 )  ) 

S ~ - ( ,  4 - 6 , 2 ( ,  2 ) + 3 ( , 2 )  2) = - 4 7 ( ,  4 - 6r/2(, 2 ) + 3 ( , 2 )  2) (3.12) 

(The first, trivial, equation of this set of equations is used also in the 
calculation of the term W2). By applying these calculation rules we obtain 

X(So,  Sl) = 8 ( , 2 )  2 {h2[e-~'~ + e -~(s~ 

+ e  ~(2s0-s,)] + (r/2) e 2~0} (3.13) 

On the other hand, by using the important relation 

eSeo ~ 8 8 ~e~o.e m (3.14) 

Esee Eq. (3.5) of ref 2] we obtain 

~ (x) e w~176 ,l~ a w ,  8 e.o. ~ 

8 8 
= 8x  ~ ( x )  ~ x  ~O(x) e rI(*~ ~') lax ~9(x) e m~ 

= & O(x)  ~x O(x)  ~,(x) e " ~ ~  ~ 

a g.(x) r/(l~'(o) - (So - Sl) ~x r ~ 

x e m~ e rt(1)(~~ ~) (3.15) 
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[The last inequality has been obtained by using Eq. (4.13) of ref. 2.] Note 
that 

3kx 2 kx 3 
H ( w ( 0 ) -  r 02(x ) O'(x) (3.16) 

When putting Eqs. (3.13) and (3.15) into Eq. (3.9) and integrating 
W3(so) over So (after making the preliminary integration over sl), we 
obtain 

f ;  W3(So) dso 

where 

=8(~)~x~,(x) r h 2 ~(7, x)B(7, x) 

1 ] <.2> } 
+ A(7, x) 1}(27, x) +~  I}2(7, x ~ - ~  B(7, x) 1}(27, x) 

+(x) f_;oi )(3k; -8('#~)~x \r ~ -)r 
| {h2[1}20,-//(1), x) g(7, x)+ B2(7-H(1), x) •(27, x) 
+ 1}2(27--H(1), x) 1}(7, x)J + (g]2> 1}2(27_ H(1) ' x) 1}(27, x)} 

(3.17) 

( (3.18) N(7, x)==-~ l + o(x)(7+4A) j 

1( kx 3 ) 
1}(~ ,x) - -  1+ 7 O(x)(~+ 2A) (3.19) 

When ~= 7 -  H(1), B(f, x) must be determined by having recourse to the 
hierarchy of functions of Eq. (4.15) of ref. 2. 

3.2. D ichotorn ic  Case 

In the purely dichotomic case (see Section 2.1), K(s) can be replaced 
by Kz(s) with no approximation at all. The ( 1 - P )  ~-q~ means indeed 
that the "excitation" term applied to the "ground" state Peq(~) produces a 
transition to the space spanned by the "excited states. When only one 
"excited" state is available (this is precisely the case of the dichotomic 
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noise), the excitation ~1 cannot do anything but recover the "ground" 
state, resulting in 

(1 - P )  ~,(1 - P )  5~1P = 0 (3.20) 

Thus, from Eq, (3.1) we obtain in this case 

-~(x;t)=~acr(x;t)+ W2(s)exp(-Qs)ds ~r(x; t) (3.21) 

Thus, the only possible correction to the BFPA equation stems from the 
expansion of the exponential exp( -  Qs) of Eq. (3.30) conveniently adapted 
to the case r 0, i.e., 

exp( - Q s) = exp ( - ~x r 0-~ (~(3)H))  (3.22) 

By replacing the exponential, expanded into a Taylor power series up 
to the first order in s, into the second term of the rhs of Eq. (3.21) and 
making it tend to infinity, we obtain 

O ~ O 1 
~ ( x ;  0 = ~eo~(x; t)+ (~2>o. w. r 7x r ~ - / 7  

- (~2)o.1 ~ O(x)~r 

~x a 1 
• r ~ O(x) ~ _ 3----B (3.23) 

The fourth-order corrections that are proven to coincide with the exact 
results illustrated in Figs. 1 were obtained by putting H =  0 in the third 
term on the rhs of Eq. (3.23), replacing ( y -  H) -1 appearing in the second 
term on the rhs of Eq. (3.23) with 7-1(1 + zH(~)), and adopting the renor- 
realization technique of refs. 2 and 12. The motivations behind this 
approximation are the same as those mentioned in Section 3.1. Details on 
this satisfactory theoretical result are given in Section 4.1. 

4. A THEORETICAL ANALYSIS  OF THE B R E A K D O W N  
OF THE LINEAR RESPONSE A P P R O X I M A T I O N  

The major of this section is to show with purely analytical arguments 
that upon increase of the correlation time T the linear response 
approximation breaks down. Let us first focus on the case of dichotomic 
noise. 
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4.1. D ichotomic  Noise 

From Horsthemke and Lefever (~3) we see t ha t  the equilibrium dis- 
tribution of the variable x can be written as 

Nr 
O'eq(X ) = 4h z 62r qo2(x) 

|  1 
2h 6~(x') 

1 )] 
(p(x') - 2h ~r 

(4.1) 

Let us assume that this equilibrium distribution can be regarded as being 
the solution of the effective Fokker-Planck equation 

8 8 8 q~(x) + D + r -a a(x;at t) = I - ?--s ox ~ ~ofr(x)] ~(x; t) (4.2) 

The equilibrium distribution of this Fokker-Planck equation reads 

N ~0(x') dx' 
O'eq(X ) = exp J crP~ff(x) D~(x') qb~rr(x') 

(4.3) 

where D=4h262/?. By comparing Eq.(4.3) with Eq.(4.1), we find that 
these two distributions coincide with each other if 

�9 ~ ( x ) =  r  (4.4) 

which must be compared with the corresponding result of the best 
Fokker-Planck approximation [-see Eq. (2.8), here rewritten for the 
reader's convenience] 

~(x)  = r + kx3~/(1 + 2Az) (4.5) 

The astonishing result is that if z ~ 0, upon decrease of D a larger and 
larger disagreement between q~rr(x) and OS(x) is produced, this being 
precisely the behavior opposite to that predicted by the linear response 
approximation. The linear response approximation leads to an exact result in 
the white noise limit but is completely invalid for colored noise. This explains 
why, as illustrated by Fig. 2, the BFPA turns out to be less satisfactory 
than the white noise approximation. 

We are now indeed in a position to show that the breakdown of the 
linear response approximation occurs in this case at the first order in the 
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noise correlation time ~. This means that the nonstandard diffusion 
operator of Eq.(3.23) produces a relevant correction to the BFPA 
equation at the order Dr. To show that, we have recourse to Eq. (3.23). 
Neglecting the terms of order higher than v, we can rewrite Eq. (3.23) as 

~(x; t)= [ - ~  ~o(x) + D ~ O(x) ~ r 

- D2~ ~x 0(x) 0(x) ~x 0(x) 0(x) cr(x; t) (4.6) 

where ~(x)  is the approximation at first order in v to Eq. (4.5). Note that 
the equilibrium distribution of x in the white noise limit can be rewritten as 

from which we obtain 

where 

N r ~o(x') dx' 
a~q)(X) : ~--~ exp j (4.7) 

-~x ~q)(X)= A(x) a~q)(X) (4.8) 

q~(x) - DO(x) O'(x) 
A(x) =- DO 2 (4.8') 

Differentiating again both terms of Eq. (4.8), we obtain 

9 2 

Ox---- 5 a~q)(X)= B(x) a~q)(X) (4.9) 

where 

rp2(x) - D[40(x)  0 '(x) q~(x) + 02(x) ~0'(x)] + 2D202(x) ~J'Z(x) 
B(x) =- D04(x) 

(4.9') 

The result expressed via the set of equations from (4.8) to (4.9') allows us 
to replace the last term on the rhs of Eq. (4.6) with an effective diffusion 
term of standard type. This can be done by writing 
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D2z2 O~x t/J(x)~-~ ~(x) 0~X ~J(X)~ O(x)o-(x; t) 

a O(x) ~x q4x) = 02172 ~X I//(X) ~X 

• 4/(x) ~(x; t) + 0(x) ~ ~(x; t) 

=D2"c: ~9(x)-~xO(X ) [OP'(x))Z+O(x)tP"(x)]a(x;t) 

a #2 } 
+ 30(x) 0'(x) ~ ~(x; t) + 02(x) ~ ~(x; t) 

and assuming that 

(4.10) 

0 
~xx or(x; t) = A(x) o(x; t) (4.11) 

02 
c?x2 (~r(x; t) = B(x) or(x; t) (4.12) 

easly seen by 
Eqs. (2.3b) and 
producing 

This assumption implies that the system is not very far from the 
equilibrium distribution of the white noise limit, where Eqs. (4.11) and 
(4.12) would coincide with the exact relations (4.8) and (4.9). Then we 
replace Eqs. (4.11) and (4.12) [with A(x) and B(x) defined by Eqs. (4.8') 
and (4.9')] into Eq. (4.10). The resulting expression, in turn, is replaced 
into the last term on the rhs of Eq. (4.6). Note that this procedure allows us 
to replace the BFPA diffusion function $(x) by the renormalized one: 

...... (x) = [kx 3 + tp'(x) (p(x)- q)((x) ~(x)] ~" 

cp2(x)r 
+ ~k(x) (4.13) 

D~9(x) 

Note that the first term on the rhs of Eq. (4.13) exactly vanishes [as can be 
making explicit the term ~'(x)~p(x)-(p'(x)~(x) via 
(2.3e) and using the definition of Eq. (2,8')], thereby 

p2(x)~ 
. . . . . .  ( x )  = 0 ( x )  (4 .14)  

DO(x) 

We thus see that r . . . . . .  (X) coincides with @err(x) [see Eq. (4.4)]. 
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It must be stressed that in this special case, by expanding ~(x) of the 
BFPA equation up to the first order in r and having recourse to the pertur- 
bation contribution of order 5e 4 [with the respective function of type qS(x) 
truncated at the order vo] we recover the exact result of Eq. (4.4). Note 
that this is a lucky consequence of the fact that the exact solution 
[Eq. (4.4)] is a linear function of ~. The terms of order 5e 6 are expected to 
cancel with the terms of order L# 4 and 5e~ with the respective functions of 
type ~(x) expanded up to orders T and z2, respectively. The result of 
Eq. (4.14) strongly supports the validity of the assumptions of Eqs. (4.11) 
and (4.12). Figure 2 illustrates the discrepancy between the results of the 
BFPA equation and the result of the above renormalization procedure, 
which leads to an equilibrium distribution coincident with the exact one. 

4.2. Nonl inear  Gaussian Noise 

The analysis of this case is similar to that of the case of the dichotomic 
noise. Even in this case the first nonvanishing diffusion term of nonstan- 
dard type is characterized by a third-order derivative [see Eq. (3.17)]. The 
functions ~(~, x) and ~(~, x) of Eqs. (3.18) and (3.19) are replaced by I/7, 
and the second term on the rhs of Eq. (3.17), being of higher order in v, is 
disregarded. This approximation is believed to produce no significant effect 
(for the negligible effect of color at the perturbation order ~ see Fig. 3b'). 
The remaining third-order derivative is then replaced by the equivalent 
second-order one by using the procedure detailed in Section4.1. The 
resulting diffusion operator is then comparable with the perturbation term 
at the second order in &o,, with q~(x) replaced with its white noise 
approximation. This shows that the perturbation term at the third order in 
&a~ provokes a breakdown of the linear response approximation affecting 
also the white noise approximation (the most severe breakdown of the 
linear response possible!). The reason the white noise approximation of 
ref. 10 does not result in a large disagreement with the actual equilibrium 
distribution at moderate values of the parameter Q/2)/]: (see Figs. 3b' and 
3c') is that the correction stemming from L#~ mainly concerns the tails of 
the equilibrium x distribution, resulting in large effects only in the x region 
characterized by a virtually vanishing population. This is clearly illustrated 
via Fig. 4. If the noise intensity become so large as to populate at a 
significant extent the large-x regions, the white noise approximation of 
Sagues and San Miguel (1~ would break down also in the limiting case 
7 ~ ~ (see Fig. 4). 
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Fig. 4. Comparison between (- -) the absolute value of the diffusion function 
Dleb(x) + D2~z(x) of the BFPA equation for the nonlinear Gaussian noise [see Eqs. (2.16) 
and (2.16')] and ( . . .  ) the absolute value of the diffusion term obtained by replacing the 
third-order derivative of Eq. (3.17) with an equivalent one of second order. Both diffusion 
coefficients are plotted as functions of x. In order to make it clear that the correction diffusion 
term virtually vanishes in the most populated region, the ],heoretical equilibrium distribution 
of ~he variable x is also plotted as a function of x (solid line). It is thus shown that the correc- 
tion term plays a negligible role in the case of noise of weak intensity (distributions as in 
Fig. 3a), while becoming important in the case of noise of large intensity (distributions as in 
Fig. 3b'). The corresponding ordinate scale (in arbitrary units) is on the right. The parameters 
of Eq. (2.1) are F =  1, ~ = 500, h =  1.5, (r/2) =0.04, ~ =  1, /3= 1/2. Note that the ratio of the 
value of the former to the latter diffusion coefficients is virtually independent of 7 as y > 200. 
Thus, the third-order ( ~ )  diffusion term is correct also in the white-noise limit. 

5. C O N C L U D I N G  R E M A R K S  

This paper shows that the linear response approximation leading to 
the BFPA, i.e., Eq. (3.8) of ref. 2, can be applied also to non-Gaussian 
statistics. In this case, however, the range of validity of this approximation 
is still more limited than in the Gaussian case of ref. 2. In the case of 
dichotomic noise, the BFPA breaks down at the first order in the 
correlation time z of the noise 4- In the case of the quadratic Gaussian 
noise the breakdown takes place at the zeroth order in v. This is a dramatic 
condition where the Fokker-Planck approximation is completely invalid. 
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Figure 3a illustrates the case where, due to a suitable choice of the 
parameters, this catastrophic condition is not evident. However, the 
corresponding theoretical analysis of Section 4.2 shows that systems of the 
type of Eq. (2.1') can be found where this breakdown at ? =  oe might 
produce impressive effects. In the case illustrated in Fig. 4 this breakdown 
would be rendered evident by increasing the population of the large-x 
regions (thereby increasing the noise intensity). With different forms of 
O(x), noises of large intensity might not be necessary. 

It must be pointed out that the theoretical results of the present paper 
have been made possible by using the projection method, which, not being 
restricted to the Gaussian case, allowed us to study the key case of the 
dichotomic noise. 

A further remarkable result of this paper is the excellent agreement 
between the theory and analog simulation (Figs. 1 and 2). This excellent 
agreement implies both the validity of the procedure adopted to replace 
third- and fourth-order x derivatives with equivalent standard diffusion 
terms and the very good accuracy of our analog simulation apparatus. 

APPENDIX  

This Appendix is devoted to illustrating the apparatus behind the 
results of analog simulation used in this paper to support our theoretical 
arguments. 

We simulated Eq. (2.1) with t/either Gaussian or dichotomic by using 
the electric device illustrated in Fig. 5. 

R 
Rc 

1 

j /-v 
w 

2 

4 
Fig. 5. Scheme of the analog circuit used to simuate Eq. (2.1). 
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The integration operation is simulated by means of a Miller integrator 
(I) and the nonlinear terms are simulated via operational multiplier devices 
(AD 354). 

We get the nonlinear noise sending a colored noise to one of the 
inputs of the multiplier 3. 

In the case of Gaussian noise color changes were obtained by 
changing the characteristic time of a low-pass filter put between the output 
of the noise generator and the input of our device. A constant voltage is 
added to the noise at the input of the multiplier 3 to reproduce the 
deterministic term of Eq. (2.1). 

Note that it is convenient to balance the output of the Miller 
integrator to get a more accurate symmetry of the deterministic system. To 
test this symmetry, we measure the values of the two stable equilibrium 
points in the stationary condition and in the absence of external noise. The 
output voltage is sent to a computer to have a statistical distribution. 

It has to be stressed that, although crossing the zero value is 
rigorously forbidden by the theory, in the analog experiment this may take 
place as a consequence of the additive internal noise. Luckily this does not 
influence the results, because this only means that both symmetric 
solutions are exhibited by our analog system. Moreover, this affords 
another way to test the symmetry of the system. The accuracy of the analog 
simulation apparatus is illustrated by comparing the exact solution of the 
dichotomic case with analog one (see Fig. 1). 

ACKNOWLEDGMENTS 

We acknowledge financial support from the Ministero della Pubblica 
Istruzione and the Consiglio Nazionale delle Ricerche. 

REFERENCES 

1. P. Grigolini, in Noise in Non-linear Dynamical Systems, Vol. I, Theory, F. Moss and 
P. V. E. McClintock, eds. (Cambridge University press, 1988), Chapter 5. 

2. S. Faetti, L. Fronzoni, P. Grigolini, and R. Mannella, J. Low Temp. Phys., this issue, 
preceding paper. 

3. T. Fonseca and P. Grigolini, Phys. Rev. A 33A:1122 (1986); L. Fronzoni, P. Grigolini, 
R. Mannella, and B. Zambon, Phys. Rev. A 34A:t499 (1986). 

4. A. Morita, Phys. Rev. A 33A:1199 (1986). 
5. R. Kubo, J. Phys. Soc. Jpn. 12:570 (1957); R. Kubo, Rep. Prog. Phys. 29:55 (1966). 
6. N. G. Van Kampen, Phys. Norv. 5:279 (1971). 
7. J. M. Sancho, M. San Miguel, S.L. Katz, and J.D. Gunton, Phys. Rev. A 26A:1589 

(1982). 



Projection Approach to Fokker-Planck Equation 1003 

8. K. Lndenberg and B. J. West, Physica 119A:485 (1983). 
9. W. Horsthemke, C. R. Doering, R. Lefever, and A. S. Chi, Phys. Rev. A 31A: 1123 (1985). 

10. F. Sagues and M. San Miguel, Phys. Rev. A 32A:1843 (1985). 
11. M. San Miguel and J. M,. Sancho, Z. Phys. B Condensed Matter 43:361 (1986). 
12. C. Festa, T. Fonseca, L. Fronzoni, P. Grigolini, A. Papini, Phys. Lett. A 117A:57 (1986). 
13. W. Horsthemke and R. Lefever, Noise Induced Transitions, Theory and Applications in 

Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984). 


